MTH 203 midterm solutions

1. Up to isomorphism, list all abelian groups of order 64.

Solution. This is equivalent to determining all possible admissible tuples T =
ni, N, . ..,ng) of positive integers such that

)
(¢) ming...n; = 64, and
(d) ged(ni,nigq) > 1, for 1 <i<n-—1.

By the Classification of Finitely Generated Abelian Groups, we know that each
such admissible tuple T' = (ny,no, ..., ny) yields a group

k
GT = H Zni;
i=1

which is unique up to isomorphism. Finally, there are 11 admissible tuples, which
are:

© o N e e W =

_
—_ O



2. Using the First Isomorphism Theorem (or otherwise), establish the following iso-
morphisms.

(a) R?/7% = S* x S* where S' = {2 € C: |z| = 1}.

(b) C*/S' > Ry, where Ry = {z € R: z > 0} is a group under real multipli-
cation.

Solution. (a) From class, we know that applying the First Isomorphism Theorem

to the epimorphism ‘
@:R—)Slzx@eﬂ”
yields the isomorphism
R/Z = S*.

Since the direct product of two groups is a group, we see that both R> = R x R
and S' x S! are groups. Moreover, the map

ViR = S x SV (w,y) B (0(2), 0(y))

is an epimorphism, as each of its component map are epimorphisms. Now,

Keryy = {(z,9) eR*:¢((2,y) = (1,1)}
= {(z,y) €R*: p(z) =1 and p(y) = 1}
= {(z,y) €R*: p(z) =1 and p(y) = 1}
= {zeR:px) =1} x{yeR:py) =1}
= Kery x Kerp
= Z X 4.

Therefore, applying the First Isomorphism Theorem to ¢, we conclude that

R?/Ker = Im1p, that is, R?/Z* = S x S*.

(b) Consider the map
m:C* — Ryog: 2 ¥ |2].

Clearly, m is a homomorphism, for if z,w € C*, then
m(zw) = [zw| = [z|jw| = m(z)m(w).

Moreover, for any x € R+, we see that m(z) = |z| = x, and so m is a surjective
map. Furthermore, we have that

Kerm={z€ C*:|z| =1} =S"
Therefore, the First Isomorphism Theorem implies that

C*/Kerm = Imm or C*/S* = R.,.



3. For a group G, show that G/Z(G) is cyclic if, and only if, G is abelian.

Solution. First, we note that as Z(G) < G, the quotient G/Z(G) is a group.
Suppose that G is abelian. Then Z(G) = G, and so we have that

G/2(G) = G/G ={G} = {1},

which is cyclic.

Conversely, suppose that G/Z(G) is cyclic. Then denoting H = Z(G), we see that
there exists g € G such that G/H = (gH), that is, every left coset of H in G is of
the form ¢°H, for some i € Z. Now consider any two distinct elements a,b € G.
Since the distinct cosets of H form a partition of GG, there exists cosets ¢" H and
g°H that contain the elements a and b, respectively. Further, this implies that
there exists elements h,, hy, € H such that

a=g"h, and b = g°hs.

So, we have

ab = (g9"h,)(g°hs)
g"(hrg%)hs  (By associativity)
= ¢ (¢°h,)hs (. h. € H)
= (¢"¢°)(h.hs) (By associativity)
= (¢°9")(hsh.) (As any two powers of g commute and h,., hs € H.)
= g°(g"hs)h (By associativity)
= ¢*(hsg")hr (. hs€ H)
= (¢°hs)(g"h,) (By associativity)
= ba

Therefore, as ab = ba, for all a,b € G, the group G is abelian.



4. Let S(R?) denote the group of symmetries of R%. Show that for every n > 3,
there exists a monomorphism ¢, : Dy, — S(R?).

Solution. Let R be a rotation of R? about the origin counterclockwise by 27 /n
radians, and let S be a reflection of R? about the X-axis. Then we see that
o(R) =mn and o(S) = 2.

Now consider the complex n'* roots of unity C,, = {e?™*/" : 0 < k < n — 1}.
These roots correspond to the following n (pairwise equidistant) points on the
unit circle St in R?:

{(cos(2mk/n),sin(27k/n)) : 0 < k <n—1}.
Joining each pair
(cos(2mk/n),sin(27k/n)), (cos(2m(k + 1)/n),sin(2x(k + 1)/n)), for 0 < k < n,

of equidistant points appearing in cyclical sequence in the unit circle by a line
segment, yields a regular n-gon P,. Moreover, the symmetries R and S restrict
to symmetries R and S’ of P,, where R’ is a rotation of P, by 27/n and S’ is a
reflection of P, about a bisector (or a diagonal) through the point (1,0). Hence,
we have that (R, S") = D,,, and by extension (R, S) = Ds,.

Finally the map r — R, s +— S extends to a homomorphism given by
w:Dgn%S(RQ):sirjlgSiRj, for0<i<2and 0<j<n-—1,

which is clearly injective, as Im ¢ = (R, S)(= Day).



5. Let G be a nontrivial group.

(a)

Show that the set
Aut(G) ={¢ : G = G| ¢ is an isomorphism}

forms a group under composition.
When G = Z,, for n > 2, show that Aut(Z,) = U,,.. [Hint: For ¢ € Aut(Z,),
what is o(¢([1]))?]

Solution. (a) Closure: Given ¢,1 € Aut(G), we see that ¢ o) is bijective,
and both ¢ and 1) are bijective. Moreover, given g, h € G, we see that

(pov)(gh) = o(v(gh)) (By definition of composition.)
= o(¥(9)v(h)) (1 € Aut(@))
= o(¢(9))o(v(h)) (¢ € Aut(@))
= (¢po)(g)(¢po)(h). (By definition of composition.)

Hence, we have ¢ o 1) € Aut(G).
Associativity: Given ¢,v,y € Aut(G), and any g € G, we see that

(po(ox))g) = o(ox)(g))
= #(¥(x(9)))

= (¢o¥)(x(9))

= ((¢ov)ox)(9),

from which associativity follows.

(By definition of composition.)
(By definition of composition.)
(By definition of composition.)
(By definition of composition.)

Existence of identity: The identity isomorphism i¢ : G — G is the identity
element in Aut(G), for given ¢ € Aut(G) and any g € G, we have

plic(g)) = »(g) = ic(e(g)).
Existence of inverse: For any ¢ € Aut(G), the inverse map ¢! is clearly
bijective. Moreover, given ¢',h' € G, let p(g9) = ¢ and p(h) = I/, for
g,h € G. Then
P GR) = gh =7 (g ) (R,
which shows that ¢! € Aut(G). Finally, by definition of inverse, we have
popl=ig=¢ oy
(b) Given a finite set X and a map f: X — X, we know that

f is injective <= f is surjective <= f is bijective. (1)

Moreover, we know from class (Lesson Plan 3.3 (vii)) that given a homomor-
phism ¢ : G — H between finite groups

p is injective <= ¢ is order-preserving. (2)
From (1) and (2), it follows that

v € Aut(G) <= ¢ is order-preserving. (3)



Furthermore, given a homomorphism ¢ : Z,, — Z,,, we have

for any [k] € Z,,. So, we have that:
Every homomorphism ¢ : Z,, — Z,, is uniquely determined by ¢([1]). (4)
Therefore, an arbitrary homomorphism is of the form
Ok Ln — L 2 [1] > [K].
Since Z,, = ([1]), we have o([1]) = n, and so (3) and (4) imply that
pr € Aut(Zy) <= o(p([1])) =n < ([k]) = Z,. ()
Further, we know (from Quiz 1, Question 2) that
([k]) =7, <= gcd(k,n) = 1. (6)
Putting (5) and (6) together, we have

or € Aut(Z,) <= gcd(k,n) =1
<~ [kl e U, (By definition of U,.)

Therefore, the map
a: Aut(Z,) = {or : ged(k,n) = 1} = U, : op = [K].
is bijective.

It remains to show that « is a homomorphism, but this follows from the
observation that given ¢y, o € Aut(Z,), we have

(er o)1) = wx(ew((1])



6. (Bonus) Show that Aut(Us) = De.

Solution. We know from class that Us = {[1], [3], [5], [7]} = Z2 X Z,, which has
three elements of order 2. Up to isomorphism, this group (the Klein 4-group) has
the form

G ={1,a,b,ab}, where o(a) = o(b) = o(ab) = 2.

(See the solution to HW IV - 2.3 (iv)(a).) So, this implies that
a=a'b="0b"" and ab= (ab)™".
By assertion (3) from the solution to Question 5, we know that
¢ € Aut(G) <= ¢ is order preserving.

Moreover, since G = (a,b), it follows that any homomorphism ¢ : G — G is
uniquely determined by ¢(a) and ¢(b). Consequently, there are exactly 6 choices
for a ¢ € Aut(G), which are:

(i) ¢(a) = a and ¢(b) = b: This would imply that p(ab) = ab, thereby yielding
the identity isomorphism, which we denote by 1.

(il) ¢(a) = b and p(b) = a: This would imply that
o(ab) =ba =b"ta™! = (ab)™ = ab.

This yields an isomorphism of order 2, as it swaps the two elements a and b,
while fixing the remaining two group elements. We denote this isomorphism
by s'.

(iii) ¢(a) = a and (b) = ab: This would imply that

@(ab) = a®b = b.

This yields an isomorphism of order 2, as it swaps the two elements b and ab,
while fixing the remaining two group elements. We denote this isomorphism
by s”.

(iv) ¢(b) = b and ¢(a) = ab: This would imply that
©(ab) = ab* = a.
This yields an isomorphism of order 2, as it swaps the two elements a and ab,

while fixing the remaining two group elements. We denote this isomorphism
n

by ™.
\% a) =>ban = ab: is would imply that
(v) ¢(a) = b and p(b) b: Th 1d ly th
@(ab) = b(ab) = b(ab) * =b(bta™ ) = (bb Nat=a"' = a.

Since a — b,b — ab,ab — a, this isomorphism cyclically permutes a, b, ab,
and hence is of order 3. We denote this isomorphism by r’.

(vi) ¢(a) = ab and ¢(b) = a: This would imply that
¢(ab) = (ab)a = (ab) ta= (b 'a Ha=b""' =b.

Since a — ab,ab — b,b — a, this isomorphism cyclically permutes a, ab, b,
and hence is of order 3. We denote this isomorphism by r”.
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Thus, we have
Aut(G) = {1, 7", s, ", s"}.

Further, a direct computation yields that:
ror' =1" sor' =5"so(ror’)=5", and §(r')F = ()3, 0 < k < 2,

where (r')* =y’ o1’ o... o', Therefore, the map
~—————

k times
Y Dg = (r,s) — Aut(G) = (', ) : s'r’ 2y (s")'(r')!, for i =0,1and 0 < j < 2,

is clearly an isomorphism, and the assertion follows.



