MTH 203 midterm solutions

1. Up to isomorphism, list all abelian groups of order 64.

Solution. This is equivalent to determining all possible admissible tuples $T=$ $\left(n_{1}, n_{2}, \ldots, n_{k}\right)$ of positive integers such that
(a) each $n_{i} \geq 2$,
(b) $n_{i} \leq n_{i+1}$, for $1 \leq i \leq n-1$,
(c) $n_{1} n_{2} \ldots n_{k}=64$, and
(d) $\operatorname{gcd}\left(n_{i}, n_{i+1}\right)>1$, for $1 \leq i \leq n-1$.

By the Classification of Finitely Generated Abelian Groups, we know that each such admissible tuple $T=\left(n_{1}, n_{2}, \ldots, n_{k}\right)$ yields a group

$$
G_{T}:=\prod_{i=1}^{k} \mathbb{Z}_{n_{i}}
$$

which is unique up to isomorphism. Finally, there are 11 admissible tuples, which are:

1. $(2,2,2,2,2,2)$,
2. $(2,2,2,2,4)$
3. $(2,2,2,8)$
4. $(2,2,4,4)$
5. $(2,2,16)$
6. $(2,4,8)$
7. $(4,4,4)$
8. $(2,32)$
9. $(4,16)$
10. $(8,8)$
11. (64)
12. Using the First Isomorphism Theorem (or otherwise), establish the following isomorphisms.
(a) $\mathbb{R}^{2} / \mathbb{Z}^{2} \cong S^{1} \times S^{1}$, where $S^{1}=\{z \in \mathbb{C}:|z|=1\}$.
(b) $\mathbb{C}^{\times} / S^{1} \cong \mathbb{R}_{>0}$, where $\mathbb{R}_{>0}=\{x \in \mathbb{R}: x>0\}$ is a group under real multiplication.

Solution. (a) From class, we know that applying the First Isomorphism Theorem to the epimorphism

$$
\varphi: \mathbb{R} \rightarrow S^{1}: x \stackrel{\varphi}{\mapsto} e^{i 2 \pi x}
$$

yields the isomorphism

$$
\mathbb{R} / \mathbb{Z} \cong S^{1}
$$

Since the direct product of two groups is a group, we see that both $\mathbb{R}^{2}=\mathbb{R} \times \mathbb{R}$ and $S^{1} \times S^{1}$ are groups. Moreover, the map

$$
\psi: \mathbb{R}^{2} \rightarrow S^{1} \times S^{1}:(x, y) \stackrel{\psi}{\mapsto}(\varphi(x), \varphi(y))
$$

is an epimorphism, as each of its component map are epimorphisms. Now,

$$
\begin{aligned}
\operatorname{Ker} \psi & =\left\{(x, y) \in \mathbb{R}^{2}: \psi((x, y))=(1,1)\right\} \\
& =\left\{(x, y) \in \mathbb{R}^{2}: \varphi(x)=1 \text { and } \varphi(y)=1\right\} \\
& =\left\{(x, y) \in \mathbb{R}^{2}: \varphi(x)=1 \text { and } \varphi(y)=1\right\} \\
& =\{x \in \mathbb{R}: \varphi(x)=1\} \times\{y \in \mathbb{R}: \varphi(y)=1\} \\
& =\operatorname{Ker} \varphi \times \operatorname{Ker} \varphi \\
& =\mathbb{Z} \times \mathbb{Z}
\end{aligned}
$$

Therefore, applying the First Isomorphism Theorem to ψ, we conclude that

$$
\mathbb{R}^{2} / \operatorname{Ker} \psi \cong \operatorname{Im} \psi, \text { that is, } \mathbb{R}^{2} / \mathbb{Z}^{2} \cong S^{1} \times S^{1}
$$

(b) Consider the map

$$
m: \mathbb{C}^{\times} \rightarrow \mathbb{R}_{>0}: z \stackrel{m}{\mapsto}|z|
$$

Clearly, m is a homomorphism, for if $z, w \in \mathbb{C}^{\times}$, then

$$
m(z w)=|z w|=|z||w|=m(z) m(w) .
$$

Moreover, for any $x \in \mathbb{R}_{>0}$, we see that $m(x)=|x|=x$, and so m is a surjective map. Furthermore, we have that

$$
\text { Ker } m=\left\{z \in \mathbb{C}^{\times}:|z|=1\right\}=S^{1}
$$

Therefore, the First Isomorphism Theorem implies that

$$
\mathbb{C}^{\times} / \operatorname{Ker} m \cong \operatorname{Im} m \text { or } \mathbb{C}^{\times} / S^{1} \cong \mathbb{R}_{>0}
$$

3. For a group G, show that $G / Z(G)$ is cyclic if, and only if, G is abelian.

Solution. First, we note that as $Z(G) \triangleleft G$, the quotient $G / Z(G)$ is a group. Suppose that G is abelian. Then $Z(G)=G$, and so we have that

$$
G / Z(G)=G / G=\{G\} \cong\{1\}
$$

which is cyclic.
Conversely, suppose that $G / Z(G)$ is cyclic. Then denoting $H=Z(G)$, we see that there exists $g \in G$ such that $G / H=\langle g H\rangle$, that is, every left coset of H in G is of the form $g^{i} H$, for some $i \in \mathbb{Z}$. Now consider any two distinct elements $a, b \in G$. Since the distinct cosets of H form a partition of G, there exists cosets $g^{r} H$ and $g^{s} H$ that contain the elements a and b, respectively. Further, this implies that there exists elements $h_{r}, h_{s} \in H$ such that

$$
a=g^{r} h_{r} \text { and } b=g^{s} h_{s}
$$

So, we have

$$
\begin{array}{rlrl}
a b & =\left(g^{r} h_{r}\right)\left(g^{s} h_{s}\right) & & \\
& =g^{r}\left(h_{r} g^{s}\right) h_{s} & & \text { (By associativity) } \\
& =g^{r}\left(g^{s} h_{r}\right) h_{s} & \left(\because h_{r} \in H\right) \\
& =\left(g^{r} g^{s}\right)\left(h_{r} h_{s}\right) & & \text { (By associativity) } \\
& =\left(g^{s} g^{r}\right)\left(h_{s} h_{r}\right) & \text { (As any two powers of } \left.g \text { commute and } h_{r}, h_{s} \in H .\right) \\
& =g^{s}\left(g^{r} h_{s}\right) h_{r} & & \text { (By associativity) } \\
& =g^{s}\left(h_{s} g^{r}\right) h_{r} & & \left(\because h_{s} \in H\right) \\
& =\left(g^{s} h_{s}\right)\left(g^{r} h_{r}\right) & \quad \text { (By associativity) } \\
& =b a
\end{array}
$$

Therefore, as $a b=b a$, for all $a, b \in G$, the group G is abelian.
4. Let $S\left(\mathbb{R}^{2}\right)$ denote the group of symmetries of \mathbb{R}^{2}. Show that for every $n \geq 3$, there exists a monomorphism $\varphi_{n}: D_{2 n} \rightarrow S\left(\mathbb{R}^{2}\right)$.
Solution. Let R be a rotation of \mathbb{R}^{2} about the origin counterclockwise by $2 \pi / n$ radians, and let S be a reflection of \mathbb{R}^{2} about the X-axis. Then we see that $o(R)=n$ and $o(S)=2$.
Now consider the complex $n^{\text {th }}$ roots of unity $C_{n}=\left\{e^{i 2 \pi k / n}: 0 \leq k \leq n-1\right\}$. These roots correspond to the following n (pairwise equidistant) points on the unit circle S^{1} in \mathbb{R}^{2} :

$$
\{(\cos (2 \pi k / n), \sin (2 \pi k / n)): 0 \leq k \leq n-1\} .
$$

Joining each pair

$$
(\cos (2 \pi k / n), \sin (2 \pi k / n)),(\cos (2 \pi(k+1) / n), \sin (2 \pi(k+1) / n)), \text { for } 0 \leq k \leq n
$$

of equidistant points appearing in cyclical sequence in the unit circle by a line segment, yields a regular n-gon P_{n}. Moreover, the symmetries R and S restrict to symmetries R^{\prime} and S^{\prime} of P_{n}, where R^{\prime} is a rotation of P_{n} by $2 \pi / n$ and S^{\prime} is a reflection of P_{n} about a bisector (or a diagonal) through the point (1,0). Hence, we have that $\left\langle R^{\prime}, S^{\prime}\right\rangle \cong D_{2 n}$, and by extension $\langle R, S\rangle \cong D_{2 n}$.
Finally the map $r \mapsto R, s \mapsto S$ extends to a homomorphism given by

$$
\varphi: D_{2 n} \rightarrow S\left(\mathbb{R}^{2}\right): s^{i} r^{j} \stackrel{\varphi}{\mapsto} S^{i} R^{j}, \text { for } 0 \leq i \leq 2 \text { and } 0 \leq j \leq n-1,
$$

which is clearly injective, as $\operatorname{Im} \varphi=\langle R, S\rangle\left(\cong D_{2 n}\right)$.
5. Let G be a nontrivial group.
(a) Show that the set

$$
\operatorname{Aut}(G)=\{\varphi: G \rightarrow G \mid \varphi \text { is an isomorphism }\}
$$

forms a group under composition.
(b) When $G=\mathbb{Z}_{n}$, for $n \geq 2$, show that $\operatorname{Aut}\left(\mathbb{Z}_{n}\right) \cong U_{n}$. [Hint: For $\varphi \in \operatorname{Aut}\left(\mathbb{Z}_{n}\right)$, what is $o(\varphi([1]))$?]
Solution. (a) Closure: Given $\phi, \psi \in \operatorname{Aut}(G)$, we see that $\phi \circ \psi$ is bijective, and both ϕ and ψ are bijective. Moreover, given $g, h \in G$, we see that

$$
\begin{array}{rlrl}
(\phi \circ \psi)(g h) & =\phi(\psi(g h)) & & \text { (By definition of composition.) } \\
& =\phi(\psi(g) \psi(h)) & & (\psi \in \operatorname{Aut}(G)) \\
& =\phi(\psi(g)) \phi(\psi(h)) & & (\phi \in \operatorname{Aut}(G)) \\
& =(\phi \circ \psi)(g)(\phi \circ \psi)(h) . & \text { (By definition of composition.) }
\end{array}
$$

Hence, we have $\phi \circ \psi \in \operatorname{Aut}(G)$.
Associativity: Given $\phi, \psi, \chi \in \operatorname{Aut}(G)$, and any $g \in G$, we see that

$$
\begin{array}{rlrl}
(\phi \circ(\psi \circ \chi))(g) & =\phi(\psi \circ \chi)(g)) & & \text { (By definition of composition.) } \\
& =\phi(\psi(\chi(g))) & & \text { (By definition of composition.) } \\
& =(\phi \circ \psi)(\chi(g)) & & \text { (By definition of composition.) } \\
& =((\phi \circ \psi) \circ \chi)(g), & \text { (By definition of composition.) }
\end{array}
$$

from which associativity follows.
Existence of identity: The identity isomorphism $i_{G}: G \rightarrow G$ is the identity element in $\operatorname{Aut}(G)$, for given $\varphi \in \operatorname{Aut}(G)$ and any $g \in G$, we have

$$
\varphi\left(i_{G}(g)\right)=\varphi(g)=i_{G}(\varphi(g))
$$

Existence of inverse: For any $\phi \in \operatorname{Aut}(G)$, the inverse map ϕ^{-1} is clearly bijective. Moreover, given $g^{\prime}, h^{\prime} \in G$, let $\varphi(g)=g^{\prime}$ and $\varphi(h)=h^{\prime}$, for $g, h \in G$. Then

$$
\varphi^{-1}\left(g^{\prime} h^{\prime}\right)=g h=\varphi^{-1}\left(g^{\prime}\right) \varphi^{-1}\left(h^{\prime}\right),
$$

which shows that $\phi^{-1} \in \operatorname{Aut}(G)$. Finally, by definition of inverse, we have

$$
\varphi \circ \varphi^{-1}=i_{G}=\varphi^{-1} \circ \varphi .
$$

(b) Given a finite set X and a map $f: X \rightarrow X$, we know that

$$
\begin{equation*}
f \text { is injective } \Longleftrightarrow f \text { is surjective } \Longleftrightarrow f \text { is bijective. } \tag{1}
\end{equation*}
$$

Moreover, we know from class (Lesson Plan 3.3 (vii)) that given a homomorphism $\varphi: G \rightarrow H$ between finite groups

$$
\begin{equation*}
\varphi \text { is injective } \Longleftrightarrow \varphi \text { is order-preserving. } \tag{2}
\end{equation*}
$$

From (1) and (2), it follows that

$$
\begin{equation*}
\varphi \in \operatorname{Aut}(G) \Longleftrightarrow \varphi \text { is order-preserving. } \tag{3}
\end{equation*}
$$

Furthermore, given a homomorphism $\varphi: \mathbb{Z}_{n} \rightarrow \mathbb{Z}_{n}$, we have

$$
\varphi([k])=\varphi(\underbrace{[1]+\ldots+[1]}_{k})=k \varphi([1]),
$$

for any $[k] \in \mathbb{Z}_{n}$. So, we have that:
Every homomorphism $\varphi: \mathbb{Z}_{n} \rightarrow \mathbb{Z}_{n}$ is uniquely determined by $\varphi([1])$.
Therefore, an arbitrary homomorphism is of the form

$$
\varphi_{k}: \mathbb{Z}_{n} \rightarrow \mathbb{Z}_{n}:[1] \stackrel{\varphi_{k}}{\longmapsto}[k] .
$$

Since $\mathbb{Z}_{n}=\langle[1]\rangle$, we have $o([1])=n$, and so (3) and (4) imply that

$$
\begin{equation*}
\varphi_{k} \in \operatorname{Aut}\left(\mathbb{Z}_{n}\right) \Longleftrightarrow o(\varphi([1]))=n \Longleftrightarrow\langle[k]\rangle=\mathbb{Z}_{n} \tag{5}
\end{equation*}
$$

Further, we know (from Quiz 1, Question 2) that

$$
\begin{equation*}
\langle[k]\rangle=\mathbb{Z}_{n} \Longleftrightarrow \operatorname{gcd}(k, n)=1 . \tag{6}
\end{equation*}
$$

Putting (5) and (6) together, we have

$$
\begin{aligned}
\varphi_{k} \in \operatorname{Aut}\left(\mathbb{Z}_{n}\right) & \Longleftrightarrow \operatorname{gcd}(k, n)=1 \\
& \left.\Longleftrightarrow[k] \in U_{n} \quad \text { (By definition of } U_{n} .\right)
\end{aligned}
$$

Therefore, the map

$$
\alpha: \operatorname{Aut}\left(Z_{n}\right)=\left\{\varphi_{k}: \operatorname{gcd}(k, n)=1\right\} \rightarrow U_{n}: \varphi_{k} \stackrel{\alpha}{\mapsto}[k] .
$$

is bijective.
It remains to show that α is a homomorphism, but this follows from the observation that given $\varphi_{k}, \varphi_{k^{\prime}} \in \operatorname{Aut}\left(\mathbb{Z}_{n}\right)$, we have

$$
\begin{aligned}
\left(\varphi_{k} \circ \varphi_{k^{\prime}}\right)([1]) & =\varphi_{k}\left(\varphi_{k^{\prime}}([1])\right. \\
& =\varphi_{k}\left(\left[k^{\prime}\right]\right) \\
& =\varphi_{k}(\underbrace{[1]+\ldots+[1]}_{k^{\prime}}) \\
& =\underbrace{[k]+\ldots+[k]}_{k^{\prime}}) \\
& =\left[k k^{\prime}\right] \\
& =[k]\left[k^{\prime}\right] \\
& =\varphi_{k}([1]) \varphi_{k^{\prime}}([1]) .
\end{aligned}
$$

6. (Bonus) Show that $\operatorname{Aut}\left(U_{8}\right) \cong D_{6}$.

Solution. We know from class that $U_{8}=\{[1],[3],[5],[7]\} \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}$, which has three elements of order 2. Up to isomorphism, this group (the Klein 4-group) has the form

$$
G=\{1, a, b, a b\}, \text { where } o(a)=o(b)=o(a b)=2 .
$$

(See the solution to HW IV - 2.3 (iv)(a).) So, this implies that

$$
a=a^{-1}, b=b^{-1}, \text { and } a b=(a b)^{-1}
$$

By assertion (3) from the solution to Question 5, we know that

$$
\varphi \in \operatorname{Aut}(G) \Longleftrightarrow \varphi \text { is order preserving. }
$$

Moreover, since $G=\langle a, b\rangle$, it follows that any homomorphism $\varphi: G \rightarrow G$ is uniquely determined by $\varphi(a)$ and $\varphi(b)$. Consequently, there are exactly 6 choices for a $\varphi \in \operatorname{Aut}(G)$, which are:
(i) $\varphi(a)=a$ and $\varphi(b)=b$: This would imply that $\varphi(a b)=a b$, thereby yielding the identity isomorphism, which we denote by 1 .
(ii) $\varphi(a)=b$ and $\varphi(b)=a$: This would imply that

$$
\varphi(a b)=b a=b^{-1} a^{-1}=(a b)^{-1}=a b .
$$

This yields an isomorphism of order 2 , as it swaps the two elements a and b, while fixing the remaining two group elements. We denote this isomorphism by s^{\prime}.
(iii) $\varphi(a)=a$ and $\varphi(b)=a b$: This would imply that

$$
\varphi(a b)=a^{2} b=b .
$$

This yields an isomorphism of order 2 , as it swaps the two elements b and $a b$, while fixing the remaining two group elements. We denote this isomorphism by $s^{\prime \prime}$.
(iv) $\varphi(b)=b$ and $\varphi(a)=a b$: This would imply that

$$
\varphi(a b)=a b^{2}=a
$$

This yields an isomorphism of order 2 , as it swaps the two elements a and $a b$, while fixing the remaining two group elements. We denote this isomorphism by $s^{\prime \prime \prime}$.
(v) $\varphi(a)=b$ and $\varphi(b)=a b$: This would imply that

$$
\varphi(a b)=b(a b)=b(a b)^{-1}=b\left(b^{-1} a^{-1}\right)=\left(b b^{-1}\right) a^{-1}=a^{-1}=a .
$$

Since $a \rightarrow b, b \rightarrow a b, a b \rightarrow a$, this isomorphism cyclically permutes $a, b, a b$, and hence is of order 3 . We denote this isomorphism by r^{\prime}.
(vi) $\varphi(a)=a b$ and $\varphi(b)=a$: This would imply that

$$
\varphi(a b)=(a b) a=(a b)^{-1} a=\left(b^{-1} a^{-1}\right) a=b^{-1}=b
$$

Since $a \rightarrow a b, a b \rightarrow b, b \rightarrow a$, this isomorphism cyclically permutes $a, a b, b$, and hence is of order 3 . We denote this isomorphism by $r^{\prime \prime}$.

Thus, we have

$$
\operatorname{Aut}(G)=\left\{1, r^{\prime}, r^{\prime \prime}, s^{\prime}, s^{\prime \prime}, s^{\prime \prime \prime}\right\} .
$$

Further, a direct computation yields that:

$$
r^{\prime} \circ r^{\prime}=r^{\prime \prime}, s^{\prime} \circ r^{\prime}=s^{\prime \prime}, s^{\prime} \circ\left(r^{\prime} \circ r^{\prime}\right)=s^{\prime \prime \prime}, \text { and } s^{\prime}\left(r^{\prime}\right)^{k}=\left(r^{\prime}\right)^{3-k} s^{\prime}, 0 \leq k \leq 2,
$$

where $\left(r^{\prime}\right)^{k}=\underbrace{r^{\prime} \circ r^{\prime} \circ \ldots \circ r^{\prime}}_{k \text { times }}$. Therefore, the map
$\psi: D_{6}=\langle r, s\rangle \rightarrow \operatorname{Aut}(G)=\left\langle r^{\prime}, s^{\prime}\right\rangle: s^{i} r^{j} \xrightarrow{\psi}\left(s^{\prime}\right)^{i}\left(r^{\prime}\right)^{j}$, for $i=0,1$ and $0 \leq j \leq 2$,
is clearly an isomorphism, and the assertion follows.

