
MTH 203 midterm solutions

1. Up to isomorphism, list all abelian groups of order 64.

Solution. This is equivalent to determining all possible admissible tuples T =
(n1, n2, . . . , nk) of positive integers such that

(a) each ni ≥ 2,

(b) ni ≤ ni+1, for 1 ≤ i ≤ n− 1,

(c) n1n2 . . . nk = 64, and

(d) gcd(ni, ni+1) > 1, for 1 ≤ i ≤ n− 1.

By the Classification of Finitely Generated Abelian Groups, we know that each
such admissible tuple T = (n1, n2, . . . , nk) yields a group

GT :=
k∏
i=1

Zni
,

which is unique up to isomorphism. Finally, there are 11 admissible tuples, which
are:

1. (2, 2, 2, 2, 2, 2),

2. (2, 2, 2, 2, 4)

3. (2, 2, 2, 8)

4. (2, 2, 4, 4)

5. (2, 2, 16)

6. (2, 4, 8)

7. (4, 4, 4)

8. (2, 32)

9. (4, 16)

10. (8, 8)

11. (64)
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2. Using the First Isomorphism Theorem (or otherwise), establish the following iso-
morphisms.

(a) R2/Z2 ∼= S1 × S1, where S1 = {z ∈ C : |z| = 1}.
(b) C×/S1 ∼= R>0, where R>0 = {x ∈ R : x > 0} is a group under real multipli-

cation.

Solution. (a) From class, we know that applying the First Isomorphism Theorem
to the epimorphism

ϕ : R→ S1 : x
ϕ7−→ ei2πx

yields the isomorphism
R/Z ∼= S1.

Since the direct product of two groups is a group, we see that both R2 = R × R
and S1 × S1 are groups. Moreover, the map

ψ : R2 → S1 × S1 : (x, y)
ψ7−→ (ϕ(x), ϕ(y))

is an epimorphism, as each of its component map are epimorphisms. Now,

Kerψ = {(x, y) ∈ R2 : ψ((x, y)) = (1, 1)}
= {(x, y) ∈ R2 : ϕ(x) = 1 and ϕ(y) = 1}
= {(x, y) ∈ R2 : ϕ(x) = 1 and ϕ(y) = 1}
= {x ∈ R : ϕ(x) = 1} × {y ∈ R : ϕ(y) = 1}
= Kerϕ×Kerϕ

= Z× Z.

Therefore, applying the First Isomorphism Theorem to ψ, we conclude that

R2/Kerψ ∼= Imψ, that is, R2/Z2 ∼= S1 × S1.

(b) Consider the map
m : C× → R>0 : z

m7−→ |z|.

Clearly, m is a homomorphism, for if z, w ∈ C×, then

m(zw) = |zw| = |z||w| = m(z)m(w).

Moreover, for any x ∈ R>0, we see that m(x) = |x| = x, and so m is a surjective
map. Furthermore, we have that

Kerm = {z ∈ C× : |z| = 1} = S1.

Therefore, the First Isomorphism Theorem implies that

C×/Kerm ∼= Imm or C×/S1 ∼= R>0.
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3. For a group G, show that G/Z(G) is cyclic if, and only if, G is abelian.

Solution. First, we note that as Z(G) C G, the quotient G/Z(G) is a group.
Suppose that G is abelian. Then Z(G) = G, and so we have that

G/Z(G) = G/G = {G} ∼= {1},

which is cyclic.

Conversely, suppose that G/Z(G) is cyclic. Then denoting H = Z(G), we see that
there exists g ∈ G such that G/H = 〈gH〉, that is, every left coset of H in G is of
the form giH, for some i ∈ Z. Now consider any two distinct elements a, b ∈ G.
Since the distinct cosets of H form a partition of G, there exists cosets grH and
gsH that contain the elements a and b, respectively. Further, this implies that
there exists elements hr, hs ∈ H such that

a = grhr and b = gshs.

So, we have

ab = (grhr)(g
shs)

= gr(hrg
s)hs (By associativity)

= gr(gshr)hs (∵ hr ∈ H)
= (grgs)(hrhs) (By associativity)
= (gsgr)(hshr) (As any two powers of g commute and hr, hs ∈ H.)
= gs(grhs)hr (By associativity)
= gs(hsg

r)hr (∵ hs ∈ H)
= (gshs)(g

rhr) (By associativity)
= ba

Therefore, as ab = ba, for all a, b ∈ G, the group G is abelian.
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4. Let S(R2) denote the group of symmetries of R2. Show that for every n ≥ 3,
there exists a monomorphism ϕn : D2n → S(R2).

Solution. Let R be a rotation of R2 about the origin counterclockwise by 2π/n
radians, and let S be a reflection of R2 about the X-axis. Then we see that
o(R) = n and o(S) = 2.

Now consider the complex nth roots of unity Cn = {ei2πk/n : 0 ≤ k ≤ n − 1}.
These roots correspond to the following n (pairwise equidistant) points on the
unit circle S1 in R2:

{(cos(2πk/n), sin(2πk/n)) : 0 ≤ k ≤ n− 1}.

Joining each pair

(cos(2πk/n), sin(2πk/n)), (cos(2π(k + 1)/n), sin(2π(k + 1)/n)), for 0 ≤ k ≤ n,

of equidistant points appearing in cyclical sequence in the unit circle by a line
segment, yields a regular n-gon Pn. Moreover, the symmetries R and S restrict
to symmetries R′ and S ′ of Pn, where R′ is a rotation of Pn by 2π/n and S ′ is a
reflection of Pn about a bisector (or a diagonal) through the point (1, 0). Hence,
we have that 〈R′, S ′〉 ∼= D2n, and by extension 〈R, S〉 ∼= D2n.

Finally the map r 7→ R, s 7→ S extends to a homomorphism given by

ϕ : D2n → S(R2) : sirj
ϕ7−→ SiRj, for 0 ≤ i ≤ 2 and 0 ≤ j ≤ n− 1,

which is clearly injective, as Imϕ = 〈R, S〉(∼= D2n).
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5. Let G be a nontrivial group.

(a) Show that the set

Aut(G) = {ϕ : G→ G |ϕ is an isomorphism}

forms a group under composition.

(b) When G = Zn, for n ≥ 2, show that Aut(Zn) ∼= Un. [Hint: For ϕ ∈ Aut(Zn),
what is o(ϕ([1]))?]

Solution. (a) Closure: Given φ, ψ ∈ Aut(G), we see that φ ◦ ψ is bijective,
and both φ and ψ are bijective. Moreover, given g, h ∈ G, we see that

(φ ◦ ψ)(gh) = φ(ψ(gh)) (By definition of composition.)
= φ(ψ(g)ψ(h)) (ψ ∈ Aut(G))
= φ(ψ(g))φ(ψ(h)) (φ ∈ Aut(G))
= (φ ◦ ψ)(g)(φ ◦ ψ)(h). (By definition of composition.)

Hence, we have φ ◦ ψ ∈ Aut(G).

Associativity: Given φ, ψ, χ ∈ Aut(G), and any g ∈ G, we see that

(φ ◦ (ψ ◦ χ))(g) = φ(ψ ◦ χ)(g)) (By definition of composition.)
= φ(ψ(χ(g))) (By definition of composition.)
= (φ ◦ ψ)(χ(g)) (By definition of composition.)
= ((φ ◦ ψ) ◦ χ)(g), (By definition of composition.)

from which associativity follows.

Existence of identity: The identity isomorphism iG : G → G is the identity
element in Aut(G), for given ϕ ∈ Aut(G) and any g ∈ G, we have

ϕ(iG(g)) = ϕ(g) = iG(ϕ(g)).

Existence of inverse: For any φ ∈ Aut(G), the inverse map φ−1 is clearly
bijective. Moreover, given g′, h′ ∈ G, let ϕ(g) = g′ and ϕ(h) = h′, for
g, h ∈ G. Then

ϕ−1(g′h′) = gh = ϕ−1(g′)ϕ−1(h′),

which shows that φ−1 ∈ Aut(G). Finally, by definition of inverse, we have

ϕ ◦ ϕ−1 = iG = ϕ−1 ◦ ϕ.

(b) Given a finite set X and a map f : X → X, we know that

f is injective ⇐⇒ f is surjective ⇐⇒ f is bijective. (1)

Moreover, we know from class (Lesson Plan 3.3 (vii)) that given a homomor-
phism ϕ : G→ H between finite groups

ϕ is injective ⇐⇒ ϕ is order-preserving. (2)

From (1) and (2), it follows that

ϕ ∈ Aut(G) ⇐⇒ ϕ is order-preserving. (3)
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Furthermore, given a homomorphism ϕ : Zn → Zn, we have

ϕ([k]) = ϕ([1] + . . .+ [1]︸ ︷︷ ︸
k

) = kϕ([1]),

for any [k] ∈ Zn. So, we have that:

Every homomorphism ϕ : Zn → Zn is uniquely determined by ϕ([1]). (4)

Therefore, an arbitrary homomorphism is of the form

ϕk : Zn → Zn : [1]
ϕk7−→ [k].

Since Zn = 〈[1]〉, we have o([1]) = n, and so (3) and (4) imply that

ϕk ∈ Aut(Zn) ⇐⇒ o(ϕ([1])) = n ⇐⇒ 〈[k]〉 = Zn. (5)

Further, we know (from Quiz 1, Question 2) that

〈[k]〉 = Zn ⇐⇒ gcd(k, n) = 1. (6)

Putting (5) and (6) together, we have

ϕk ∈ Aut(Zn) ⇐⇒ gcd(k, n) = 1
⇐⇒ [k] ∈ Un (By definition of Un.)

Therefore, the map

α : Aut(Zn) = {ϕk : gcd(k, n) = 1} → Un : ϕk
α7−→ [k].

is bijective.

It remains to show that α is a homomorphism, but this follows from the
observation that given ϕk, ϕk′ ∈ Aut(Zn), we have

(ϕk ◦ ϕk′)([1]) = ϕk(ϕk′([1])
= ϕk([k

′])
= ϕk([1] + . . .+ [1]︸ ︷︷ ︸

k′

)

= [k] + . . .+ [k]︸ ︷︷ ︸
k′

)

= [kk′]
= [k][k′]
= ϕk([1])ϕk′([1]).
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6. (Bonus) Show that Aut(U8) ∼= D6.

Solution. We know from class that U8 = {[1], [3], [5], [7]} ∼= Z2 × Z2, which has
three elements of order 2. Up to isomorphism, this group (the Klein 4-group) has
the form

G = {1, a, b, ab}, where o(a) = o(b) = o(ab) = 2.

(See the solution to HW IV - 2.3 (iv)(a).) So, this implies that

a = a−1, b = b−1, and ab = (ab)−1.

By assertion (3) from the solution to Question 5, we know that

ϕ ∈ Aut(G) ⇐⇒ ϕ is order preserving.

Moreover, since G = 〈a, b〉, it follows that any homomorphism ϕ : G → G is
uniquely determined by ϕ(a) and ϕ(b). Consequently, there are exactly 6 choices
for a ϕ ∈ Aut(G), which are:

(i) ϕ(a) = a and ϕ(b) = b: This would imply that ϕ(ab) = ab, thereby yielding
the identity isomorphism, which we denote by 1.

(ii) ϕ(a) = b and ϕ(b) = a: This would imply that

ϕ(ab) = ba = b−1a−1 = (ab)−1 = ab.

This yields an isomorphism of order 2, as it swaps the two elements a and b,
while fixing the remaining two group elements. We denote this isomorphism
by s′.

(iii) ϕ(a) = a and ϕ(b) = ab: This would imply that

ϕ(ab) = a2b = b.

This yields an isomorphism of order 2, as it swaps the two elements b and ab,
while fixing the remaining two group elements. We denote this isomorphism
by s′′.

(iv) ϕ(b) = b and ϕ(a) = ab: This would imply that

ϕ(ab) = ab2 = a.

This yields an isomorphism of order 2, as it swaps the two elements a and ab,
while fixing the remaining two group elements. We denote this isomorphism
by s′′′.

(v) ϕ(a) = b and ϕ(b) = ab: This would imply that

ϕ(ab) = b(ab) = b(ab)−1 = b(b−1a−1) = (bb−1)a−1 = a−1 = a.

Since a → b, b → ab, ab → a, this isomorphism cyclically permutes a, b, ab,
and hence is of order 3. We denote this isomorphism by r′.

(vi) ϕ(a) = ab and ϕ(b) = a: This would imply that

ϕ(ab) = (ab)a = (ab)−1a = (b−1a−1)a = b−1 = b.

Since a → ab, ab → b, b → a, this isomorphism cyclically permutes a, ab, b,
and hence is of order 3. We denote this isomorphism by r′′.
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Thus, we have
Aut(G) = {1, r′, r′′, s′, s′′, s′′′}.

Further, a direct computation yields that:

r′ ◦ r′ = r′′, s′ ◦ r′ = s′′, s′ ◦ (r′ ◦ r′) = s′′′, and s′(r′)k = (r′)3−ks′, 0 ≤ k ≤ 2,

where (r′)k = r′ ◦ r′ ◦ . . . ◦ r′︸ ︷︷ ︸
k times

. Therefore, the map

ψ : D6 = 〈r, s〉 → Aut(G) = 〈r′, s′〉 : sirj
ψ7−→ (s′)i(r′)j, for i = 0, 1 and 0 ≤ j ≤ 2,

is clearly an isomorphism, and the assertion follows.
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